Trọng tâm của hình học lớp 8 là định lý Thalès và tam giác đồng dạng. Đồng thời đây cũng là một trong những dạng toán khó trong khối trung học cơ sở. Nhưng câu hỏi đặt ra là: Tại sao chúng ta phải cần biết các định lý này? Chúng giúp gì cho chúng ta trong cuộc sống hằng ngày? Chính vì thế bài viết ngày hôm nay sẽ phần nào giải đáp câu hỏi trên, và hi vọng sẽ giúp các bạn có hứng thú hơn khi làm các bài tập về dạng này.
Nhưng trước hết chúng ta phải điểm sơ qua các kiến thức cơ bản trước, sau đó mới có thể đi đến phần thực hành. Cụ thể cấu trúc của bài viết này như sau:
Định lý Thalès và định nghĩa tam giác đồng dạng
Định lý Thalès thuận
- Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳngtương ứng tỉ lệ.
Với tam giác ABC, nếu có đường thẳng d song song với BC và cắt AB, AC lần lượt tại hai điểm D, E thì:
- và và .
Định lý Thalès đảo
- Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.
Với tam giác ABC, nếu có đường thẳng d cắt AB, AC lần lượt tại hai điểm D, E và:
- hay hay
thì hay .
Tam giác đồng dạng
Hai tam giác được gọi là đồng dạng nếu một trong chúng bằng với một tam giác nhận được từ tam giác kia sau một phép vị tự. Các điều kiện cần và đủ để hai tam giác đồng dạng:
- Hai tam giác có các cặp cạnh tương ứng tỷ lệ thì đồng dạng.
- Hai tam giác có hai cặp góc tương ứng bằng nhau thì đồng dạng.
- Hai tam giác có hai cặp cạnh tương ứng tỷ lệ, góc xen giữa hai cặp cạnh ấy bằng nhau thì đồng dạng.
Các ứng dụng trong cuộc sống
Cách đo chiều cao Kim Tự Tháp Khufu của Thalès
- Thalès, Ông biết đấy, Kim tự tháp Khufu là niềm kiêu hảnh của người dân Ai Cập chúng ta, nhưng mãi đến nay, không ai biết chiều cao chính xác của nó là bao nhiêu. Nếu ông có thể giúp được, người dân Ai Cập sẽ biết ơn ông rất nhiều.
Thalès nghe xong liền đồng ý, và ông nói ngày hôm sau sẽ tiến hành đo đạc ngay. Tin tức nhanh chóng lan truyền khắp nơi. Mọi người ai cũng tò mò để xem cách đo đạc như thế nào.
- Việc đo đạc của Thales như thế nào, đến nay chưa biết rõ. Các làm như trên dựa theo Plutarch. Còn theo Hieronymus, một học trò của Aristote, thì cho rằng ông ghi lại chiều cao của Kim Tự Tháp vào thời điểm mà chiều dài của ông bằng chiều cao của ông (Tức là khi đó bóng của Kim tự tháp đúng bằng chiều cao của nó).
- Người ta cũng không biết chính xác làm thế nào Thales có thể đo chính xác chiều dài của bóng. Như ta thấy, chiều dài của bóng phải tính từ tâm của Kim tự tháp.
Đo khoảng cách khi không thể tới được
Trong thực tế, chúng ta cần đo khoảng cách tới một vật nhưng lại không thể tới đó được do cách trở địa hình hoặc đến được nhưng không thể đo đạc được bằng thước. Sau đây là một ví dụ điển hình cho vấn đề này:
Hai ngôi nhà cách nhau 1 con sông, làm thế nào chúng ta có thể đo được khoảng cách 2 ngôi nhà đó. Hoặc phát biểu đơn giản hơn, tính chiều rộng của con sông.
Các bạn nếu có lời giải thì comment ở phía dưới nhé.
Kết luận
Kết luận
Các bạn thấy đấy, điều tưởng chừng như bất khả thi hoặc trông rất khó khăn nhưng lại được giải quyết rất đơn giản từ những định lý của toán học phổ thông chúng ta.
Còn về phần các bạn, sau khi đọc xong bài viết này, tôi hy vọng các bạn sẽ thực hiện một số điều sau đây xem như bài tập về nhà:
- Làm sao để biết được chiều dài chính xác của bóng Kim tự tháp.
- Giải bài toán đo khoảng cách của con sông phần "Đo khoảng cách khi không thể tới được";
- Hãy tìm thêm một số ví dụ ứng dụng tam giác đồng dạng trong thực tế cuộc sống nhé.
Cám ơn các bạn và hẹn gặp lại trong các bài viết khác!
Cảm ơn bài viết rất hay và bổ ích.
Trả lờiXóa